17ME563

USN

Fifth Semester B.E. Degree Examination, Dec.2019/Jan.2020

Automation and Robotics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

- What is automation? Explain basic elements of an automated system. (10 Marks)
 - Briefly explain advanced automation functions. b.

(10 Marks)

- OR
- What is the difference between a continuous variable and discrete variable? 2 (05 Marks) a.
 - Define sensor. Explain common measuring sensors used in automation system. (08 Marks) b. (07 Marks)
 - Briefly describe the three steps of the Analog-to-digital conversion process.

Module-2

- What is an automated production line? Explain general configuration of an automated 3 production line and its system configuration. (10 Marks)
 - b. Explain storage buffer in automated production line.

(04 Marks)

- c. A 20 station transfer line has an ideal cycle time of $T_c = 1.2$ mins. The probability of station breakdown per cycle is equal for all stations and P = 0.05 break downs/cycle. Down time $T_d = 0.8$ min. For each of the upper bound and lower bound, determine:
 - Frequency of line stops per cycle (i)
 - Average actual production rate
 - (iii) Line efficiency

(06 Marks)

- What are the four automated assembly system configurations? Explain. (10 Marks)
 - Define automatic identification and data capture. Explain briefly bar code and RFID.

(10 Marks)

Module-3

- What is an Industrial Robot? Explain common Robot configurations with a neat diagram. (12 Marks)
 - Define the following:
 - Work volume
 - Resolution (ii)
 - (iii) Accuracy
 - (iv) Repeatability

(08 Marks)

OR

Explain different sensors used in Robot. 6

(08 Marks)

Identify the Robotics application. b.

(08 Marks)

Write a note on end effecter.

(04 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-4

Describe positions, orientation and frames as related to manipulator. (10 Marks) 7

Illustrate the interpretation used to map points between frames as operators using (10 Marks) Translation and Rotation.

Write notes on: 8

> Link description (i)

(10 Marks) Link connection description

(ii) Explain Actuator space, joint space and Cartesian space using the example of PUMA-560. (10 Marks)

Module-5

Define Robot Programming Language and explain the levels of Robot Programming. 9

(10 Marks) (10 Marks)

List and explain requirements of a Robot Programming Language.

What are the problems peculiar to Robot Programming? Explain. 10

(10 Marks)

Explain Central issues in OLP Systems.

(10 Marks)